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Abstract. As a temporal approach a method of examining occurrence of nuclear collisions is exploited in
terms of the wave packet description. The off-shell scattering matrix element characteristic of the method
governs the time and position when reactions take place during interactions. For a plain exemplification
we consider occurrence of relativistic nucleon-nucleus scattering in the Dirac phenomenology. The results
indicate that at higher intermediate energies the forward scattering occurs before the peak of the nucleon
probability density reaches the center of the nuclear interaction region.

PACS. 03.65.Pm Relativistic wave equations – 11.80.Fv Approximations (eikonal approximation, varia-
tional principles, etc.) – 25.40.Cm Elastic proton scattering

1 Introduction

The conception of time and position when nuclear col-
lisions occur during interactions will develop novel ver-
sions of reaction mechanisms found particularly at inter-
mediate and high energies. The time and position indicate
for instance when and where the scattering of a particle
takes place for a given angle together with the generation
of some excited state of the target in the course of the
interaction. Furthermore, these would serve to examine
features of particle production and/or emission in more
complicated collisions. Let the time and the position be
hereafter designated as occurrence time and occurrence
position, respectively.

In a previous paper [1] the occurrence time is defined in
terms of the wave packet which emerges due to the inter-
action. It thereby turns out that even for a reaction con-
cerned with sufficiently small wavelength the time found
by this method deviates considerably from that of a con-
ventional classical picture using trajectories for scattering.
This suggests further exploitation of the quantum formal-
ism for the occurrence of collisions.

Reactions with sufficiently short wavelength have often
been discussed by means of semiclassical and classical ap-
proaches. As for occurrence of scattering, however, primi-
tive methods of using trajectories do not always yield rea-
sonable results since they disregard significant quantum
features, and have difficulty in handling, for example, ef-
fects of nuclear absorption. There exist different types of
nuclear reaction with small wavelength which have charac-
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teristics beyond classical versions. In scattering described
by the Dirac spinor such as that in the Dirac phenomenol-
ogy [2], for example, contribution of the lower component
in the spinor increases with increasing incident energy,
which has no classical analog and is expected to cause
some peculiar behavior of the wave packet.

In this paper consideration of occurrence of relativistic
nucleon-nucleus elastic scattering during the interaction is
performed in terms of the wave packet description of the
Dirac phenomenology as a plain exemplification of occur-
rence of nuclear scattering with sufficiently small wave-
length. While the occurrence time alone is considered in [1]
we here discuss the occurrence position also. The off-shell
scattering matrix element defined in the present approach
is to determine the time as before, and here the time is
employed to find the position using the nucleon proba-
bility density. This procedure indicates how to deal with
occurrence of quantum collisions, and leads to the demon-
stration that even for the primitive and basic scattering
mentioned above the mechanism of the occurrence is be-
yond classical versions due to some features of the off-shell
matrix element and despite the short wavelength. Discus-
sion of the occurrence is made also in reference to some
novelty of the wave packet behavior due to characteristics
of the Dirac approach at higher intermediate energies [3].

In sect. 2 the occurrence time formula is derived in a
different manner from the previous one. In sect. 3 the oc-
currence time and the incident nucleon probability density
are represented in the eikonal approach in order to define
and discuss the occurrence position. Section 4 describes
results and discussion. Conclusion is given in sect. 5.
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2 Occurrence time

The occurrence time provides a temporal description of
quantum collisions and differs from the time delay [4]
in significance and consequent form. As performed in [1]
derivation of its formula is made here on the basis of the
wave packet emerging during the interaction. Although
the formula is identical with the previous one the present
derivation is straightforward.

Suppose that the relevant Dirac equations read[
H0 + W − E(k)

]
ψ(+)(k, r) = 0, (2.1)[

H0 − E(p)
]
φ(p, r) = 0, (2.2)

where E(k) =
√

k2 + m2, E(p) =
√

p2 + m2, and

H0 = α · (−i∇) + βm, W = V (r) + βS(r), (2.3)

V and S being the Lorentz vector and scalar potentials.
And furthermore, k and p are the initial and the final
wave vectors. Assuming that the spin component is not
changed during the interaction, we omit the index. Then
the wave packet representation of the full spinor takes the
form

ψ(k, r, t) =
∫

d3q

E(k′)
a(q)e−iE(k′)(t−t0)ψ(+)(k′, r), (2.4)

where q = k′ − k and the amplitude a(q) is taken to be
real so that the center of the free wave packet with W = 0
would pass the origin r = 0 at t = t0.

When an incident wave packet reaches the interaction
region, different wave packets corresponding to each of the
channels arise due to the interaction. As mentioned pre-
viously, the definition of the occurrence time is concerned
with the emerging wave packets written as

X(k, t) =
∫

d3q

E(k′)
a(q)

e−iE(k′)(t−t0)

E(+)(k′) − H0
Wψ(+)(k′). (2.5)

Then we consider a measure of the overlap of the final
state φ(p) with the arising wave packet:

Ω(p,k, t) = |〈φ(p) | X(k, t)〉|, (2.6)

where p is, for the time being, taken arbitrarily and is
then independent of k in the sense that X is associated
with different wave vectors. While Ω = 0 for t = −∞,
the magnitude of Ω increases with the emergence of the
wave packet, and approaches some nonvanishing constant
as t → ∞. Suppose that the scattering occurs when Ω
amounts to some magnitude. That is, the occurrence time
is presumed to be the time corresponding to the peak
which the time derivative ∂Ω/∂t has as a function of time
for given p and k.

From (2.2) and (2.5) it follows that:

〈
φ(p) | X(k, t)

〉
=

∫
d3q

E(k′)
a(q)

× e−iE(k′)(t−t0)

E(+)(k′) − E(p)
T (p,k′), (2.7)

where T (p,k′) is the off-shell matrix element represented
as

T (p,k′) =
〈
φ(p)|W |ψ(+)(k′)

〉
=

|T (p,k′)|eiη(p,k′). (2.8)

Defining

L(p,k, λ) =
∫

d3q

E(k′)
a(q)T (p,k′)e−i∆E(λ−t0), (2.9)

and using

1
ω′ = −i

∫ t

−∞
dλ eiω′(t−λ),

where ∆E = E(k′) − E(k) and ω′ = E(+)(k′) − E(p),
expression (2.7) is then rewritten as〈

φ(p)|X(k, t)
〉

=

−ie−iE(k)(t−t0)

∫ t

−∞
dλeiω(t−λ)L(p,k, λ), (2.10)

where ω = E(+)(k) − E(p). We assume that in (2.8)
|T (p,k′)| � |T (p,k)| and η(p,k′) = η(p,k)+q·∇kη(p,k)
with p independent of k, and in (2.9) ∆E = q · u, where
∇k is the gradient with respect to k and u = ∇kE(k) =
k/E(k) is the incident velocity. Then, by means of

G(X) =
∫

d3q

E(k′)
a(q)eiq·X, (2.11)

there results

L(p,k, λ) = T (p,k)G
[∇kη(p,k) − u(λ − t0)

]
. (2.12)

Now let the amplitude be taken as

a(q) = Ae−d2q2
, (2.13)

A and d(> 0) being constant. We thereby find

G(X)=B exp
[
− X2

(2d)2

]
, B=

A

E(k)

(√
π

d

)3

,

(2.14)

where E(k′) in (2.11) is replaced by E(k). On writing the
phase as η(p,k) = η(p, k, θ), where θ is the angle between
k and p, and using

∇kη =
(

∂η

∂k
+

cot θ

k

∂η

∂θ

)
k
k
− 1

k sin θ

(
∂η

∂θ

)
p
p

,

G in (2.12) is found to be

G = C(p, k, θ)e−{w(λ)}2
, (2.15)

where

w(λ) =
u

2d

(
λ − t0 − 1

u

∂η

∂k

)
. (2.16)
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Then it follows that

Ω(p,k, t) =∣∣C(p, k, θ)T (p,k)
∣∣∣∣∣∣

∫ t

−∞
dλ eiω(t−λ)e−{w(λ)}2

∣∣∣∣. (2.17)

Until now the derivative ∇kη or ∂η/∂k is given by regard-
ing p or p as being independent of k or k. Here we set
p = k, and thus ω = 0 in (2.17). Now in accordance with
the above-mentioned definition the occurrence time cor-
responds to the maximum in the time derivative of (2.17)
with p = k, and turns out to take the form

τ(k, θ) = t0 +
1
u

(
∂

∂k
η(p, k, θ)

)
p=k

. (2.18)

The derivative is hence defined by differentiating the off-
shell phase η(p, k, θ) with respect to the incident wave
number k first and then putting p = k.

The time delay is given from the on-shell matrix el-
ement [4], and is shown to be connected with the time
(2.18) as follows. Let the on-shell matrix element be ob-
tained from T (p,k) by putting p = k, and be written as

T (p,k) = T (k, θ) = |T |eiη. (2.19)

Then using η(k, θ) = η(p = k, k, θ), we here write the time
delay in the form

τ =
1
u

∂η

∂k
=

1
u

[(
∂η

∂p

)
p=k

+
(

∂η

∂k

)
p=k

]
, (2.20)

which provides

τ = t0 + τ − 1
u

(
∂η

∂p

)
p=k

, (2.21)

where (∂η/∂p)p=k is given by setting p = k in ∂η/∂p with
p independent of k. The time delay is quite small and then
the last term will be the major one. We adopt this form for
our computation and discussion. Further, the derivatives
of the phases are represented as

∂η

∂k
= Im

(
∂T

∂k
/T

)
,

∂η

∂ξ
= Im

(
∂T

∂ξ
/T

)
(2.22)

with ξ = p, k, which will also be used later.
The occurrence time in our approach is defined in

terms of the emerging wave packet or (2.6) and thus has
no classical analog in contrast to the time delay for nonrel-
ativistic scattering with small wavelength which occasion-
ally gives a picture associated with classical trajectories
as shown in the WKB method.

3 Occurrence time and position in the eikonal
approach

The occurrence time is designed to determine the occur-
rence position in terms of the nucleon probability density

given by the wave packet. In order to define and find the
occurrence position by analytic evaluations we employ the
eikonal approach, which is first outlined for our procedure.

In the eikonal approximation [5] the full spinor takes
the form

ψ(+)(k, r) = N(k)

(
ei{k·r+Q(k,r)}χ

− i
D(k,r)σ · ∇ei{k·r+Q(k,r)}χ

)
,

N(k) =

√
E(k) + m

2m(2π)3
, (3.1)

where χ is the two component spinor and D(k, r) = E(k)+
m + S(r) − V (r). Further we have

Q(k, r) = Q0(k, z, b) + Q1(k, z, b)σ · (b × k), (3.2)

Q0 =−m

k

∫ z

−∞
dz′

[
UC(k, r′)−ikz′USO(k, r′)

]
,(3.3)

Q1 = −m

k

∫ z

−∞
dz′ USO(k, r′), (3.4)

UC(k, r) = S(r) +
E(k)
m

V (r) +
S(r)2 − V (r)2

2m
, (3.5)

USO(k, r) =
1

2mD(k, r)
1
r

∂

∂r
{V (r) − S(r)}, (3.6)

where r = b+ zn,n = k/k,b ·k = 0, and r′ =
√

z′2 + b2.

3.1 The off-shell matrix element and the occurrence
time

In order to present the occurrence time in the eikonal ap-
proach, the off-shell matrix element (2.8) is written in the
eikonal form using (3.1) and the free solution

φ(p, r) = N(p)




eip·rχ

σ · peip·rχ
E(p) + m


 ,

N(p) =

√
E(p) + m

2m(2π)3
. (3.7)

From manipulations given in Appendix A we first have

T (p,k) = N(p)N(k)χ†T̂ (p,k)χ, (3.8)

where k with p �= k is for brevity employed instead of k′
in (2.8), and

T̂ (p,k) = 2m
∫

d3x
e−is·r

D

×[
ÛC + ÛSO

{
ip · r + σ · (r × p)

}]
eiQ, (3.9)

with s = p − k and

ÛC(p, k, r)=UC(k, r)+
E(k)−E(p)

2m

{
S(r)−V (r)

}
, (3.10)

ÛSO(p, k, r) =
E(k) + m

E(p) + m
USO(k, r). (3.11)
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On writing χ†T̂ (p,k)χ = F (+)(p, k, θ)+F (−)(p, k, θ), and
referring again to Appendix A, it follows that

F (±)(p, k, θ)=2πm

∫ ∞

0

db b

∫ ∞

−∞
dz

ei[(k−p cos θ)z+Q±]

D(k, r)

× [
J0(pb sin θ)ÛC(p, k, r)

+ {J0(pb sin θ) cos θ ± J1(pb sin θ) sin θ}
× ÛSO(p, k, r)p(iz ± b)

]
, (3.12)

where

Q± = Q0 ± kbQ1. (3.13)

Hereafter, we consider the forward scattering. Further-
more, the Coulomb interaction in the nuclear region is
minor compared to the vector potential, and is then dis-
regarded. Let T (p, k) denote the off-shell matrix element
(3.8) for θ = 0:

T (p, k) = N(p)N(k)
[
F (+)(p, k) + F (−)(p, k)

]
, (3.14)

where

F (±)(p, k) = F (±)(p, k, θ = 0) =

2πm

∫ ∞

0

db b

∫ ∞

−∞
dz M±(p, k, z, b), (3.15)

with

M± =
ei[(k−p)z+Q±]

D

[
ÛC + ÛSOp(iz ± b)

]
. (3.16)

Bearing in mind

M±(p = k, k, z, b) =
ik

m

∂

∂z

(
eiQ±

D

)
,

we have the on-shell matrix element

T (k) = T (p = k, k) =
(
N(k)

)2 4πik

E(k) + m
g(k), (3.17)

with

g(k) =
∫ ∞

0

db b

[
1
2
(
eiχ+ + eiχ−

) − 1
]
, (3.18)

where χ± = χC ± χSO and

χC = −m

k

∫ ∞

−∞
dz UC(k, r),

χSO = −m

k
(kb)

∫ ∞

−∞
dz USO(k, r). (3.19)

As made before the derivative in (2.18) is rewritten as
(∂kη)p=k = ∂kη− (∂pη)p=k, where ∂ξ = ∂/∂ξ. Then using
(2.22) each term in the right-hand side becomes

∂kη = Im
(

∂kg(k)
g(k)

)
, (3.20)

(
∂pη

)
p=k

= −Re
(

J(k)
g(k)

)
, (3.21)

where

J(k)=
m

2k

(
E(k)+m

)∫ ∞

0

db b

∫ ∞

−∞
dz

{
∂p(M++M−)

}
p=k

,

(3.22)

with

(
∂pM±

)
p=k

=
eiQ±

D

[
− izUC +

k

2mE(k)
(V − S)

+(iz ± b)USO

(
m

E(k)
− ikz

)]
. (3.23)

Since the potentials S and V vary comparatively slowly
with respect to the wave number k we assume ∂kS =
∂kV = 0 in the derivative (∂kη)p=k or ∂kη. On the other
hand, the explicit energy dependence due to E(k) in (3.5)
gives rise to some characteristics for the scattering at inter-
mediate energies as a result of the appreciable contribution
of the lower component of the Dirac spinor, which is to
be described in sect. 4. Note that the first term in square
brackets in (3.23) results from differentiation with respect
to p of the function ei(k−p)z in (3.16) peculiar to the off-
shell matrix element. The term dominantly contributes to
the integral (3.22), and is crucial to the occurrence, which
will also be discussed in sect. 4

3.2 The probability density and the occurrence
position

The occurrence position is assumed to be the point cor-
responding to the maximum of the nucleon probability
density at the occurrence time. In terms of (2.4) the prob-
ability density is represented as

ρ(k, r, t) = ψ†(k, r, t)ψ(k, r, t). (3.24)

Using (3.1) this becomes

ρ(k, z, b, t) =
I

2
[
e−Φ+ + e−Φ−

]
, (3.25)

with I = B2Λ and

Φ±(k, z, b, t)=
1

2d2

[
b2+

{
z − u

(
t−t0

)
+Re ∂kQ±

}2

−(
Im ∂kQ±

)2] + 2 Im Q±, (3.26)

the derivation of which is given in Appendix B.
The peak moves along the line with b = 0, and then

in view of (3.13) we set Q± = Q0(k, z, b = 0). Let z = ζ
be the position of the peak at the occurrence time. Writ-
ing Φ(k, z, t) = Φ+(k, z, b = 0, t) = Φ−(k, z, b = 0, t) and
employing (2.18) with θ = 0, the occurrence position ζ is,
therefore, obtained by finding the point corresponding to
the minimum of the form

Φ(k, z, t = τ)=
1

2d2

[{
z−(

∂kη
)
p=k

+ Re ∂kQ0

}2

−(
Im ∂kQ0

)2] + 2 Im Q0. (3.27)
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Table 1. The potential parameters for (4.1) are from [5] for p-40Ca at Tp = 500 MeV and from [6] for p-208Pb at Tp = 800MeV,
and the values of τ are given with choice t0 = 0 and those of ζ for d = 1.0 fm.

Tp ( MeV) S0 (MeV) V0 ( MeV) R ( fm) a( fm) τ (10−24 s) ζ ( fm)

500 −303 + i73 191 − i86 3.55 0.64 −4.0 −1.2

800 −273 + i97 154 − i109 6.60 0.63 −8.2 −2.6

Here we assume that I in (3.25) is irrelevant to the deter-
mination of ζ because of Λ(k, r) � N(k)2. Obviously, the
position depends on the wave packet width d on account
of nuclear absorption.

4 Results and discussion

In our wave packet formalism the occurrence time is de-
fined, and the occurrence position is thereby obtained.
The time is given independently of the wave packet width
whereas the position depends on the width. In the follow-
ing we discuss the occurrence of the scattering in connec-
tion with some features of the wave packet for the Dirac
approach.

We employ the potentials in [5,6]:

S(r) = S0f(r), V (r) = V0f(r),

f(r) =
[
1 + e(r−R)/a

]−1
. (4.1)

The parameters and relevant results are presented in ta-
ble 1. The terms concerned with USO are thereby found to
be minor for discussion and are disregarded hereafter. We
first mention features of the derivatives with respect to the
incident wave number generated by expansion in powers
of q in the wave packet formulation. The explicit energy
dependence of UC in (3.5) leads to some peculiarity of the
derivatives at higher intermediate energies which may not
be found for scattering at lower energies. As shown in the
Dirac phenomenology the magnitude of ImUC is greater
than that of the repulsive ReUC. However, for the deriva-
tive

∂kQ0 =
m

k2

∫ z

−∞
dz′

(
S +

m

E(k)
V +

S2 − V 2

2m

)
, (4.2)

where S and V are assumed to be independent of k, as
mentioned before, we find

−Re ∂kQ0 	 | Im ∂kQ0|, (4.3)

because of the factor m/E(k), which is a consequence of
the appreciable contribution of the lower component. As
an example, the scattering at the kinetic energy Tp =
800MeV in table 1 gives

Q0 =
∫ z

−∞
dz′

[ − (
4.19f + 9.22f2

)
+i

(
34.30f + 3.29f2

)] × 10−2,

∂kQ0 =
∫ z

−∞
dz′

[( − 8.32f + 1.24f2
)

+i
(
1.67f − 0.45f2

)] × 10−2 fm. (4.4)

Hence Im ∂kQ0 in (3.27) does not have much effect on the
shape of the probability density and is ignored whereas
Im Q0 is crucial to the wave packet behavior.

Now expansion of E(k′) made previously yields the
terms quadratic in q as well, which are omitted in our
procedure. However, they give rise to the time dependence
of the packet width. Nevertheless, instead of a macro-
scopic wave packet, we may adopt a narrow wave packet
the width of which is smaller than the nuclear dimension
since on account of high speed the width does not appre-
ciably vary during passage through the interaction region.
The time-dependent width leads to the breadth of the
probability density which contains the term depending on
|t − t0| as shown in Appendix C. Suppose that the initial
wave packet lies at t = ti near an entrance to the inter-
action region, i.e., z = −R with b = 0 where the packet
is almost identical with the free one since the interaction
is weak, and the backward scattering amplitude is neg-
ligible, which makes the eikonal approximation available
therein. Then the density breadth decreases during the
interval ti < t < t0, attains to the minimum at t � t0,
and increases for t > t0. Further we have ti < τ < t0, and
the small difference t0 − ti � R/u(∼ 10−23s) due to the
high velocity keeps the time-dependent term minor com-
pared to the size d. Accordingly, the shrinkage and the
high speed enable one to consider the scattering process
using the narrow packet with constant width d to find the
occurrence position.

In order to discuss the results the probability density
at the occurrence time is, from (3.27), rewritten as

ρ(k, z, b = 0, t = τ) = Ie−Φ = Iρ1ρ2, (4.5)

where the decomposition is made in such a way that

ρ1 = e−Φ1 , Φ1 =
1

2d2

[
z − (

∂kη
)
p=k

+ Re ∂kQ0

]2
,

ρ2 = e−Φ2 , Φ2 = 2 Im Q0, (4.6)

Im ∂kQ0 being neglected. In fig. 1 the densities are pre-
sented in the form of e−Φ without the minor quantity I.
Since Re ∂kQ0 < 0 the peak of ρ1 is, in spite of the re-
pulsion ReUC > 0, somewhat ahead of that of the free
particle probability density which would pass the point
z = (∂kη)p=k at t = τ . However, decrease of ρ2 shifts the
peak of e−Φ backward. When the size d is taken greater
the shape of the density is distorted still more, and the
position z = ζ is shifted further from the center of the
interaction region.

The present results suggested that the scattering oc-
curs before the peak reaches the center. Apart from the
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Fig. 1. Probability densities at the occurrence time expressed
as e−Φ. The solid, dotted, and dashed curves correspond to
d = 1.0, 2.0, and 3.0 fm, respectively. The arrow indicates the
point z = (∂kη)p=k, i.e., the position of the peak of the proba-
bility density for free motion. The bar represents the position
corresponding to the maximum of ρ1 given in (4.6).

effect due to ρ2 mentioned above this substantially origi-
nates, as a numerical result, from

−R <
(
∂kη

)
p=k

− Re ∂kQ0 =

∂kη − (
∂pη

)
p=k

− Re ∂kQ0 < 0, (4.7)

which holds independently of z since Re ∂kQ0 changes
slowly. Then the peak of ρ1 is situated at some point in the
region −Re < z < 0. The result (4.7) is due to the domi-
nant term (∂pη)p=k(> 0), which is qualitatively discussed
as follows. The major contribution to the integral (3.22)
comes from the first term in square brackets of (3.23) as
stated before, and is from the region −R < z < 0 with
b ≥ 0 because of the rapid decrease of e− Im Q0 with in-
creasing z. Disregarding minor terms and quantities, the
real part of (3.23) becomes

Re
[
eiQ0

D

( − izUC

)] � e− Im Q0 cos
(
Re Q0

)
E(k) + m

z Im UC > 0,

(4.8)

where cos(Re Q0) > 0 for z < 0. On the other hand, we
have

−Re g(k) 	 | Im g(k)|. (4.9)

Then we find that (∂pη)p=k is positive due to (3.21) and
major because of the strong absorption, which leads to
−R < ζ < 0. For weaker absorption we would have an-
other result since e− Im Q0 slowly decreases and the region
of the contribution is then extended.

Now the narrower wave packet will be preferable for de-
termination of the occurrence position as long as the time
dependence of the width is negligible. As the packet width
d becomes smaller the point z = ζ approaches the position
of the peak of ρ1 or that of the maximum of the free prob-
ability density. According to computation in Appendix C
the time dependence can be disregarded for d = 1.0 fm.
As illustrated in fig. 1, the distance between the two posi-
tions stated above is appreciably short compared with the
nuclear radius, and the point z = ζ found by the above
choice is sufficiently close to the positions. Therefore, the
scattering may be regarded as occurring in the vicinity of
them. Then if an approximation ζ � (∂kη)p=k is made
the formula (2.18) for θ = 0 leads to a direct connection
between the occurrence time and position.

The time delay is found to be positive. This does not
come out of the repulsion ReUC > 0. Bearing in mind
χC(k, b) = Q0(k, z = ∞, b) and (4.3), it follows from (3.18)
that, neglecting minor terms,

Im ∂kg(k) �
∫ ∞

0

db b e− Im χC cos
(
Re χC

)
Re ∂kχC < 0.

(4.10)

Therefore, from (3.20) together with (4.9) the time delay
has a positive value. Note that delayed emission of a parti-
cle from the interaction region does not always correspond
to late occurrence of scattering. The occurrence of colli-
sions in our approach is concerned with the overlap (2.6)
relevant to emerging wave packets.

5 Conclusion

The present wave packet formulation provides a method
of defining and examining the occurrence of nuclear colli-
sions. On the basis of the arising wave packet during the
interaction the occurrence time proves to be presented in
terms of the off-shell scattering matrix element, and is
then employed to obtain the occurrence position using
the probability density of a projectile. In order to give
a typical and plain application of the method we have
dealt with the occurrence of the scattering in the Dirac ap-
proach where narrow wave packets are available for analy-
sis. The result reveals that at higher intermediate energies
the forward scattering occurs before the peak of the nu-
cleon probability density passes the center of the nuclear
interaction region.

The present adoption of potential parameters leads to
the reasonable result that the scattering takes place within
the interaction region. The consequence −R < ζ < 0 origi-
nates from the strong absorption and the function ei(k−p)z

peculiar to the off-shell matrix element. The former not
only restricts the region of contribution in the integral for
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the matrix element but also therein yields the dominant
term in combination with the latter.

The position ζ depends on the packet width, and ap-
proaches the center of the interaction region with the de-
creasing width. Using the time-independent width, the
packet may be taken so narrow that the position is found
to be near the point corresponding to the peak of the free
particle probability density at the occurrence time. On the
whole because of the sufficiently high velocity the scatter-
ing in our consideration turns out to occur in the vicinity
of the point independent of the packet size.

Appendix A. Off-shell matrix element

Computation of the off-shell matrix element is rather in-
volved due to p �= k, and proceeds as follows. As in [5] we
use

W =

(
(V + S)σ0 0

0 (V − S)σ0

)
,

σ0 being the 2× 2 unit matrix. Then from (3.1) and (3.7)
there results

T̂ (p,k) =
∫

d3x e−ip·r

×
[
V +S−i

V − S

{E(p)+m}D (σ · p)(σ · ∇)
]
ei(k·r+Q). (A.1)

Integration by parts of the term with the gradient using
S = V = 0 for r → ∞ yields

T̂ (p,k) =
∫

d3x
e−is·r

D

[
D(V + S) +

p2(V − S)
E(p) + m

+ i
E(k) + m

E(p) + m

(σ · p){σ · ∇(V − S)}
D

]
eiQ. (A.2)

From (σ · A)(σ · B) = A · B + iσ · (A × B) with A = p
and B = ∇(V −S), we have the expression (3.9) together
with (3.10) and (3.11).

Let b be given as

b = b cos ϕe1 + b sin ϕe2, (A.3)

where e1 = e2 × n and e2 = (k× p)/|k × p|. Further, we
write h = χ†σ · nχ = ±1, which for a vector A leads to

χ†σ · Aχ = hn · A. (A.4)

Using

exp[iKσ · A] = cos(K|A|) + i
σ · A
|A| sin(K|A|), (A.5)

where K is a complex scalar, it follows that:

χ† exp
[
iQ1σ · (b × k)

]
χ = cos(kbQ1), (A.6)

χ†σ · (r × p) exp
[
iQ1σ · (b × k)

]
χ =

−hpb sin θ sinϕ cos(kbQ1)

+ip(b cos θ − z sin θ eihϕ) sin(kbQ1). (A.7)

The expression (3.12) then results from s·r=pb sinθcos ϕ+
z(p cos θ − k) and the Bessel functions of integer order

Jn(x) =
1

2πin

∫ 2π

0

dϕeix cos ϕ cos(nϕ). (A.8)

According to the convention of the eikonal approxima-
tion the z-axis along the direction of the average momen-
tum (p + k)/2 is taken, and for the on-shell scattering
amplitude the momentum transfer p − k is thereby per-
pendicular to the z-axis. However, the orthogonality does
not hold for the off-shell one because of p �= k. Further, as
ei(k−p cos θ)z appears in (3.12), the corresponding function
peculiar to the off-shell matrix element arises also when
we use the convention. In this paper the convention is not
used since we consider the forward scattering.

Appendix B. Probability density

The probability density is expressed as

ρ =
∫

d3q′

E(k′′)
d3q

E(k′)
a(q′)a(q)ei[E(k′′)−E(k′)](t−t0)

×ψ(+)†(k′′, r)ψ(+)(k′, r), (B.1)

where k′ = k + q and k′′ = k + q′. Here we write Q′ =
Q(k′, r) and Q′′ = Q(k′′, r). As for ψ(+)(k′, r) given by
replacing k in (3.1) with k′ the q-dependence of the phase
factor alone is assumed to be crucial for the integration.
Further, in the lower component we write σ·∇ei(k′·r+Q′) �
iσ·(k′+∇Q′)ei(k′·r+Q′) and σ·(k′+∇Q′) � σ·k, the latter
being due to k 	 |∇Q0|, |kb∇Q1|. The lower component
of ψ(+)(k′′, r) is similarly handled. There appear k′ · r −
E(k′)(t − t0) + Q′

0, and its counterpart depending on k′′
in the exponents. We expand these in powers of q and q′,
and keep the first two terms in each expansion.

Now the integrand has

χ† exp
[ − iQ

′′∗
1 σ · (b × k′′)

]
exp

[
iQ′

1σ · (b × k′)
]
χ.
(B.2)

This is rewritten by (A.5). The factors other than the
trigonometric functions vary comparatively slowly with
respect to q and q′. Then we may replace k′ and k′′ by
k in the factors. Hence (B.2) becomes cos(Q′

1|b × k′| −
Q

′′∗
1 |b × k′′|) from χ†σ · (b × k)χ = 0 obtained by (A.4).

The terms in the argument are both linearized with re-
spect to q and q′ so that Q′

1|b×k′| = kbQ1+∇k(kbQ1) ·q
and so forth. From (2.11) it follows that:

ρ =
Λ

2
[
e−2 Im Q+

∣∣G(R+)
∣∣2 + e−2 Im Q−

∣∣G(R−)
∣∣2], (B.3)

where Λ = {N(k)}2(1 + k2/|D(k, r)|2) and

R± = r − u(t − t0) + ∇kQ± =
b +

[
z − u(t − t0) + ∂kQ±

]
n. (B.4)
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Bearing (2.14) in mind we obtain (3.25) together with
(3.26).

The above evaluation is made in disregard of the time
dependence of the packet width. Examination of the time
dependence is to be performed in sect. 4 and Appendix C,
and to warrant the use of the constant packet size for our
analysis by means of values of the packet width and the
nuclear radius.

Appendix C. The time dependence of the
wave packet width

In order to employ narrow wave packets we here examine
the time dependence of the width of the probability den-
sity arising due to the terms quadratic in q. Neglecting
the spin orbit interaction it follows from (B.1) that

ρ = Λe−2 Im Q0(k,z,b)
∣∣Γ (k, r, t)

∣∣2, (C.1)

where

Γ =
∫

d3q

E(k′)
a(q)eiP ≈ A

E(k)

∫
d3q e−d2q2+iP (C.2)

with P = q · [b + (z + ∂kQ0)n] − ∆E(t − t0), the second
derivative of Q0 being negligible. Expansion of E(k′) in
powers of q = (q1, q2, q3) yields

∆E = E(k′) − E(k) =
q2
1 + q2

2

2E(k)
+ uq3 +

m2

2E(k)3
q2
3 (C.3)

with u = k/E(k). Then integration over each of the com-
ponents of q in (C.2) leads to

ρ =
I√

1 + µ(1 + ν)
exp

[
− 2 Im Q0

− 1
2d2

{
(z − u(t − t0)+Re ∂kQ0)2

1 + µ
+

b2

1 + ν

}]
, (C.4)

where

µ =
(

m

E(k)

)4

ν, ν =
[
u(t − t0)

2kd2

]2

. (C.5)

Hence µ and ν in the exponent govern the time depen-
dence of the packet size. Obviously, with the passage of
time the probability density distribution shrinks before
t = t0 and spreads after t = t0. The result µ < ν is a
relativistic effect.

When u|t− t0| in (C.5) is replaced by R, we have µ =
1.7 × 10−2 and ν = 2.0 × 10−1, for example, at Tp =
800MeV in table 1. Accordingly, in spite of the relativistic
effect and the small value d = 1.0 fm the size of the initial
wave packet the center of which is near the point z = −R
with b = 0 proves to be still sufficiently small compared
with that of the target nucleus. Incidentally, the choice
d = 0.5 fm leads to a result ν = 3.2. The value d = 1.0 fm
then suffices for the present analysis with respect to the
determination of the occurrence position.
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